
CSE525 Lec21
After NP-completeness

Debajyoti Bera (M21)

def VerifyHamPath(instance (G,s,t), proof L): // L is a list of vertices (explain proof)
return false if L uses a vertex not in G, or does not use every vertex in G, or does not

start with s, or does not end with t
For every pair (u,v) of subsequent vertices in L:

If (u,v) is not an edge: return false
Return true

Correctness claim: G has a Hampath from s to t iff there exists a proof L for which
VerifyHamPath returns true.

Complexity claim: VerifyHamPath runs in time poly(|G|).

Verifier for NP

Verify for SUBSETSUM
def VerifySS(instance (A,T), proof B): B is a set of indices from {1...n}

return false if B is not a subset of {1 … n}
return false if the elements of A at the indices given in B do not sum to T
return true otherwise

Correctness claim: A has a subarray that sums to T iff there exists a proof B for which
VerifySS returns true.

Complexity claim: VerifySS runs in time poly(|A|,|T|) = poly(nk, |T|) if A consists of
k-bit integers.

Non-decision problems
For NP-completeness, need decision problems.

Problems that are not decision problems can be …

● Function problems (Find a colouring of a graph using at most 3 colours)
● Counting problems (Count the number of 3-colourings of a graph)
● Optimization problems (Optimize the number of colours needed to colour a graph)

Finding Satisfiable Assignment
SolveSAT(F) := Output a satisfying assignment of F if one exists, NULL o/w

If SolveSAT can be solved in polytime, then SAT can be solved in polytime.
Show: If SAT can be solved in polytime, then SolveSAT can be solved in polytime.

Q: Suppose there is a black-box B for solving SAT in polynomial-time. Design a
polynomial-time algorithm (that uses B cleverly, maybe multiple times, maybe on
cleverly constructed formulas) that can solve SolveSAT in polytime.

Finding optimal 3-colouring
Q: Suppose there is a black-box B for solving 3COL in polynomial-time. Design a
polynomial-time algorithm (that uses B cleverly, maybe multiple times, maybe on
cleverly constructed graphs) that can find a valid 3-colouring of a graph, if one exists.

x & y : two vertices with an edge
Lemma: x and y must be differently coloured.

x & y : two vertices without an edge. How to colour x and y?
Gxy = merge x and y in G

Prove that: G is 3-colourable using same colours for x and y
iff Gxy is 3-colourable

Q: Show to compute a 3-colouring of G using black-box B.

