Set lover (Universe $\left.U=\left\{x_{1} \ldots x_{n}\right\}, \delta=\left\{s_{1} \ldots s_{m}\right\}, k\right)$: return true if
NP-Completé Verifier sc $\left((u, s k), s^{\prime} \leq 8\right)$: each $s_{i} \leq u$ $s_{i}, \ldots s_{i k} s c$
(1) Algorithm for educt on USE 525 ©O?
\rightarrow Signature
\rightarrow Correctness of (agric (Reduction lemma) POMAOMQSS
\rightarrow Time complexity
(2) Algorithm for verification of $P R O B \bullet \bullet$

DeDajyoti Berra (M21)
\rightarrow Signature (Input, output) Input: (i) instance of PROB Ouphe: Brodecan (ii) $($ Proof/ Certificate / witness
\rightarrow Correctness of logic (verification lemma)
\rightarrow Time complexity?
complexity of verifier in terms of $|x|$
$L x$ is a Yes-inotance of PROB ifs there exists a proof P sw. Verifier $(x, P) \rightarrow$ true

Verifier for Ham Hath

 1. return false if L uses a vertex not in G, or does not use every vertex in G, or does not start with s , or does not end with t exactlyonceFor every pair (u, v) of subsequent vertices in L:

$$
\text { If (} u, v \text {) is not an edge: return false }
$$

3. Return true

Correctness claim: G has a Hampath from s to there exists a proof L for which VerifyHamPath returns true.
\Rightarrow Suppose G has a Hawfoth $\left(s-v_{1}-v_{2}-\cdots-v_{w-2}-t\right)$, Consider the following $L=\left[s, v_{1}, \cdots, v_{n-2} t\right]$. Line 1 doon't retumfabe. Loop in D doessit retum fake. \therefore True is returned

Verify for SUBSETSUM

$$
\text { **! Prove that }\left\{x: x \text { is a prime } \begin{array}{c}
\text { is in NP. } \\
\text { number }
\end{array}\right.
$$

def VerifySS(instance (A,T), proof B): B is a set of indices from $\{1 . . . \mathrm{n}\}$ return false if B is not a subset of $\{1 \ldots \mathrm{n}\}$
 return false if the elements of A at the indices given in B do not sum to T return true otherwise

Correctness claim: A has a subarray that sums to T iff there exists a proof B for which VerifySS returns true.

Complexity claim: VerifySS runsinntimé ${ }^{2}$ k-bit integers.

Non-decision problems

For NP-completeness, need decision problems.
Problems that are not decision problems can be ...

- $\{$ Function problems (Find a colouring of a graph using at most 3 colours)
- Counting problems (Count the number of 3-colourings of a graph)
- Optimization problems (Optimize the number of colours needed to colour a graph)

Finding Satisfiable Assignment

SolveSAT(F) := Output a satisfying assignment of F if one exists, NULL o/w
\rightarrow If SolveSAT can be solved in polytime, then SAT can be solved in polytime.
\rightarrow Show: If SAT can be solved in polytime, then SolveSAT can be solved in polytime.
Q: Suppose there is a black-bo \times B for solving SAT in polynomial-time. Design a polynomial-time algorithm (that uses B cleverly, maybe multiple times, maybe on cleverly constructed formulas) that can solve SolveSAT in polytime.

$$
\begin{aligned}
& \phi_{2}=\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{4}}\right) \wedge \\
& \left(x_{1} \vee \overline{x_{3}} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{2}} \vee x_{3} \vee x_{4}\right) \wedge \\
& \left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{2}} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right) \wedge \\
& \left(\overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)
\end{aligned}
$$

def SokeSATC F):
$\lambda \longleftarrow B(F) \leftarrow$ add a bare canc
If $r=$ fable: return $N \cup L L$
$/ /{ }_{x}$: any variable in $F F$ is satis friable
$F_{x_{1}=T}^{x_{1}}=$ copy of F with x_{1} hand ceded to T
$r_{1} \leftarrow B\left(F_{x_{1}=T}\right)$
if $r_{1}=$ True:
print $\left(x_{1}=T^{v}\right)$
else: Solve $\operatorname{sAT}\left(F_{x_{1}=T}\right)$
Ex. Find a solution to
Sudoku from a solver for its decision version.
$F_{x_{1}=F}=$ copy of F with x_{1} hand ceded to F
pint (" $x_{1}=f "$ ")
Solve St T $\left(F_{x_{1}}=f\right)$

Finding optimal 3-colouring

Q: Suppose there is a black-box B for solving 3COL in polynomial-time. Design a polynomial-time algorithm (that uses B cleverly, maybe multiple times, maybe on cleverly constructed graphs) that can find a valid 3-colouring of a graph, if one exists.

$x \& y$: two vertices with an edge
Lemma: x and y must be differently coloured.
$x \& y$: two vertices without an edge. How to colour x and y ? $G x y=$ merge x and y in G

Prove that: G is 3 -colourable using same colours for x and y iff Gxy is 3-colourable

Q: Show to compute a 3-colouring of G using black-box B.
$\gamma=B(G)$
if $r=$ fake: retum NLL
/ $r=$ true $\Rightarrow G$ is 3colorable
if Gay is 3 colorable, then

Gey
the same coloring cambe used for G.
$\overline{d o}\{G$: Take two vertices $x \& y$ without an edge Tiny: merge x \&y

$$
\begin{aligned}
& x=B\left(G_{x y}\right) \\
& \text { if } \gamma=\text { True: }
\end{aligned}
$$

recunzively find a coloring fur Cry
eve: repeat
3 until (G sap pear triangle)

Verifier Knapsack $\left(\left(V[1 \cdots n], w_{t}[1 \cdots n], w_{i}\right), B \in\{(\cdots n\})_{0}\right.$ verify that the items in B have for al wt $\leqslant \omega$ \& formal value $\geqslant V^{\prime}$

